Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
biorxiv; 2024.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2024.03.20.585861

Résumé

Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. We characterized the memory B-cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, and compared the immunogenicity with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one-month after a monovalent, BA.1 or BA.5 bivalent fourth dose COVID-19 vaccine. RBD-specific Bmem were quantified with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. All recipients had slightly increased WH1 RBD-specific Bmem numbers. Recognition of Omicron subvariants was not enhanced following monovalent vaccination, while both bivalent vaccines significantly increased WH1 RBD-specific Bmem cross-recognition of all Omicron subvariants tested by flow cytometry. Thus, Omicron-based bivalent vaccines can improve recognition of descendent Omicron subvariants by pre-existing, WH1-specific Bmem, beyond that of a conventional, monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants.


Sujets)
COVID-19
2.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.08.25.23294606

Résumé

Waning antibody responses after COVID-19 vaccination combined with the emergence of the SARS-CoV-2 Omicron lineage led to reduced vaccine effectiveness. As a countermeasure, bivalent mRNA-based booster vaccines encoding the ancestral spike protein in combination with that of Omicron BA.1 or BA.5 were introduced. Since then, BA.2-descendent lineages have become dominant, such as XBB.1.5 or BA.2.86. Here, we assessed how different COVID-19 priming regimens affect the immunogenicity of the recently used bivalent booster vaccinations and breakthrough infections. BA.1 and BA.5 bivalent vaccines boosted neutralizing antibodies and T-cells up to 3 months after boost; however, cross-neutralization of XBB.1.5 was poor. Interestingly, different combinations of prime-boost regimens induced divergent responses: participants primed with Ad26.COV2.S developed lower binding antibody levels after bivalent boost while neutralization and T-cell responses were similar to mRNA-based primed participants. In contrast, the breadth of neutralization was higher in mRNA-primed and bivalent BA.5 boosted participants. Combined, we highlight important "lessons learned" from the employed COVID-19 vaccination strategies. Our data further support the use of monovalent vaccines based on circulating strains when vaccinating risk groups, as recently recommended by the WHO. We emphasize the importance of the continuous assessment of immune responses targeting circulating variants to guide future COVID-19 vaccination policies.


Sujets)
Déficit en protéine S , Douleur paroxystique , COVID-19
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.15.22279970

Résumé

Background. A significant proportion of patients with SARS-CoV-2 infection develops long COVID with fatigue as one of the most disabling symptoms. We performed clinical and immunologic profiling of fatigued and non-fatigued long COVID patients and age and gender matched healthy controls (HCs). Methods. We included 37 long COVID patients with and 36 without severe fatigue and assessed inflammation-related monocyte gene expression, serum levels of inflammatory cytokines, and leukocyte and lymphocyte subsets 3-6 months after hospital discharge, and followed clinical symptoms up to one year. Results. Long COVID with fatigue represented a severe variant with many symptoms (median 9 [IQR 5.0-10.0] symptoms) and signs of cognitive failure (41%) and depression (>24%). Symptoms persisted up to one year follow-up. Fatigued patients showed increased expression of inflammatory genes in monocytes, increased serum IL-6, TNF-, galectin-9, and CXCL10, and increased CD8+ T-lymphocytes compared to HCs. Non-fatigued long COVID patients were arbitrarily divided in those with moderately severe disease (4 [2.5-5.0] symptoms, primarily impaired fitness, n=25) and those with mild disease (1 [1.0-2.0] symptom, n=11). Symptoms in non-fatigued long COVID patients persisted up to one year follow-up. Moderately severe patients showed reduced CD45RO- naive CD4+ T-lymphocytes and CD25+FOXP3+ regulatory CD4+ T-lymphocytes and limited monocyte and serum (galectin-9) inflammation. Mild patients showed monocyte and serum (IL-6, galectin-9) inflammation and decreased CD4+ T-lymphocyte subsets (T-helper 1 cells). Conclusion. Long COVID with fatigue is associated with many concurrent and persistent symptoms up to one year after hospitalization and with clear signs of low grade inflammation and increased CD8+ T-lymphocytes. We showed that long COVID is a clinical and immunologic heterogeneous disorder. Diagnostic tools and personalized therapies combatting the diverse immune abnormalities might be required to alleviate the persisting disabling complaints of the patients.


Sujets)
Trouble dépressif , Inflammation , Maladies du système immunitaire , COVID-19 , Crises épileptiques , Fatigue , Troubles de la cognition
4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.08.10.22278577

Résumé

Background The COVIH study is a prospective SARS-CoV-2 vaccination study in people living with HIV (PLWH). Of the 1154 PLWH enrolled, 14% showed a reduced or absent antibody response after a primary vaccination regimen. As the response to an additional vaccination in PLWH with hyporesponse is unknown, we evaluated whether an additional vaccination boosts immune responses in these hyporesponders. Methods Consenting hyporesponders received an additional 100 g of mRNA-1273. Hyporesponse was defined as [≤]300 spike(S)-specific binding antibody units [BAU]/mL. The primary endpoint was the increase in antibodies 28 days after the additional vaccination. Secondary endpoints were the correlation between patient characteristics and antibody response, levels of neutralizing antibodies, S-specific T-cell and B-cell responses, and reactogenicity. Results Of the 75 PLWH enrolled, five were excluded as their antibody level had increased to >300 BAU/mL at baseline, two for a SARS-CoV-2 infection before the primary endpoint evaluation and two were lost to follow-up. Of the 66 remaining participants, 40 previously received ChAdOx1-S, 22 BNT162b2, and four Ad26.COV2.S. The median age was 63[IQR:60-66], 86% were male, pre-vaccination and nadir CD4+ T-cell counts were 650/L[IQR:423-941] and 230/L[IQR:145-345] and 96% had HIV-RNA <50 copies/mL. The mean antibody level before the additional vaccination was 35 BAU/mL (SEM 5.4) and 45/66 (68%) were antibody negative. After the additional mRNA-1273 vaccination, antibodies were >300 BAU/mL in 64/66 (97%) with a mean increase of 4282 BAU/mL (95%CI:3241-5323). No patient characteristics correlated with the magnitude of the antibody response, nor did the primary vaccination regimen. The additional vaccination significantly increased the proportion of participants with detectable ancestral S-specific B-cells (p=0.016) and CD4+ T-cells (p=0.037). Conclusion An additional mRNA-1273 vaccination induced a robust serological response in 97% of the PLWH with a hyporesponse after a primary vaccination regimen. This response was observed regardless of the primary vaccination regimen or patient characteristics.


Sujets)
COVID-19 , Infections à VIH
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.03.31.22273221

Résumé

BackgroundVaccines can be less immunogenic in people living with HIV (PLWH), but for SARS-CoV-2 vaccinations this is unknown. Methods and FindingsA prospective cohort study to examine the immunogenicity of BNT162b2, mRNA-1273, ChAdOx1-S and Ad26.COV2.S vaccines in adult PLWH, without prior COVID-19, compared to HIV-negative controls. The primary endpoint was the anti-spike SARS-CoV-2 IgG response after mRNA vaccination. Secondary endpoints included the serological response after vector vaccination, anti-SARS-CoV-2 T-cell response and reactogenicity. Between February-September 2021, 1154 PLWH (median age 53 [IQR 44-60], 86% male) and 440 controls (median age 43 [IQR 33-53], 29% male) were included. 884 PLWH received BNT162b2, 100 mRNA-1273, 150 ChAdOx1-S, and 20 Ad26.COV2.S. 99% were on antiretroviral therapy, 98% virally suppressed, and the median CD4+T-cell count was 710 cells/{micro}L [IQR 520-913]. 247 controls received mRNA-1273, 94 BNT162b2, 26 ChAdOx1-S and 73 Ad26.COV2.S. After mRNA vaccination, geometric mean concentration was 1418 BAU/mL in PLWH (95%CI 1322-1523), and after adjustment for age, sex, and vaccine type, HIV-status remained associated with a decreased response (0.607, 95%CI 0.508-0.725). In PLWH vaccinated with mRNA-based vaccines, higher antibody responses were predicted by CD4+T-cell counts 250-500 cells/{micro}L (2.845, 95%CI 1.876-4.314) or >500 cells/{micro}L (2.936, 95%CI 1.961-4.394), whilst a viral load >50 copies/mL was associated with a reduced response (0.454, 95%CI 0.286-0.720). Increased IFN-{gamma}, CD4+, and CD8+T-cell responses were observed after stimulation with SARS-CoV-2 spike peptides in ELISpot and activation induced marker assays, comparable to controls. Reactogenicity was generally mild without vaccine-related SAE. ConclusionAfter vaccination with BNT162b2 or mRNA-1273, anti-spike SARS-CoV-2 antibody levels were reduced in PLWH. To reach and maintain the same serological responses and vaccine efficacy as HIV-negative controls, additional vaccinations are probably required.


Sujets)
COVID-19 , Infections à VIH
6.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.02.16.22271053

Résumé

There is an ongoing debate on airborne transmission of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a risk factor for infection. In this study, the level of SARS-CoV-2 in air and on surfaces of SARS-CoV-2 infected nursing home residents was assessed to gain insight in potential transmission routes. During outbreaks, air samples were collected using three different active and one passive air sampling technique in rooms of infected patients. Oropharyngeal swabs (OPS) of the residents and dry surface swabs were collected. Additionally, longitudinal passive air samples were collected during a period of 4 months in common areas of the wards. Presence of SARS-CoV-2 RNA was determined using RT-qPCR, targeting the RdRp- and E-genes. OPS, samples of two active air samplers and surface swabs with Ct value [≤]35 were tested for the presence of infectious virus by cell culture. In total, 360 air and 319 surface samples from patient rooms and common areas were collected. In rooms of 10 residents with detected SARS-CoV-2 RNA in OPS, SARS-CoV-2 RNA was detected in 93 of 184 collected environmental samples (50.5%) (lowest Ct 29,5), substantially more than in the rooms of residents with negative OPS on the day of environmental sampling (n=2) (3.6%). SARS-CoV-2 RNA was most frequently present in the larger particle size fractions (>4 m 60% (6/10); 1-4 m 50% (5/10); <1 m 20% (2/10)) (Fischer exact test p=0.076). The highest proportion of RNA-positive air samples on room level was found with a filtration-based sampler 80% (8/10) and the cyclone-based sampler 70% (7/10), and impingement-based sampler 50% (5/10). SARS-CoV-2 RNA was detected in ten out of twelve (83%) passive air samples in patient rooms. Both high-touch and low-touch surfaces contained SARS-CoV-2 genome in rooms of residents with positive OPS (high 38% (21/55); low 50% (22/44)). In one active air sample, infectious virus in vitro was detected. In conclusion, SARS-CoV-2 is frequently detected in air and on surfaces in the immediate surroundings of room-isolated COVID-19 patients, providing evidence of environmental contamination. The environmental contamination of SARS-CoV-2 and infectious aerosols confirm the potential for transmission via air up to several meters.


Sujets)
Tumeurs de l'oropharynx , Infections , Syndrome respiratoire aigu sévère , COVID-19
7.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.19.476898

Résumé

In late 2021, the highly mutated SARS-CoV-2 Omicron variant emerged, raising concerns about its potential extensive immune evasion, increased transmissibility and pathogenicity. Here, we used organoids of the human airways and alveoli to investigate Omicron's fitness and replicative potential in comparison with earlier SARS-CoV-2 variants. We report that Omicron replicates more rapidly in the airways and has an increased fitness compared to the early 614G variant and Delta. In contrast, Omicron did not replicate productively in human alveolar type 2 cells. Mechanistically, we show that Omicron does not efficiently use TMPRSS2 for entry or spread through cell-cell fusion. Altogether, our data show that Omicron has an altered tropism and protease usage, potentially explaining its higher transmissibility and decreased pathogenicity.


Sujets)
Adénocarcinome bronchioloalvéolaire , Infections , Crises épileptiques
8.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.27.21268416

Résumé

The severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2) Omicron variant (B.1.1.529) is spreading rapidly, even in vaccinated individuals, raising concerns about immune escape. Here, we studied neutralizing antibodies and T-cell responses to SARS-CoV-2 D614G (wildtype, WT), and the B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) variants of concern (VOC) in a cohort of 60 health care workers (HCW) after immunization with ChAdOx-1 S, Ad26.COV2.S, mRNA-1273 or BNT162b2. High binding antibody levels against WT SARS-CoV-2 spike (S) were detected 28 days after vaccination with both mRNA vaccines (mRNA-1273 or BNT162b2), which significantly decreased after 6 months. In contrast, antibody levels were lower after Ad26.COV2.S vaccination but did not wane. Neutralization assays with authentic virus showed consistent cross-neutralization of the Beta and Delta variants in study participants, but Omicron-specific responses were significantly lower or absent (up to a 34-fold decrease compared to D614G). Notably, BNT162b2 booster vaccination after either two mRNA-1273 immunizations or Ad26.COV.2 priming partially restored neutralization of the Omicron variant, but responses were still up to-17-fold decreased compared to D614G. CD4+ T-cell responses were detected up to 6 months after all vaccination regimens; S-specific T-cell responses were highest after mRNA-1273 vaccination. No significant differences were detected between D614G- and variant-specific T-cell responses, including Omicron, indicating minimal escape at the T-cell level. This study shows that vaccinated individuals retain T-cell immunity to the SARS-CoV-2 Omicron variant, potentially balancing the lack of neutralizing antibodies in preventing or limiting severe COVID-19. Booster vaccinations may be needed to further restore Omicron cross-neutralization by antibodies.


Sujets)
, COVID-19
9.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.04.23.20077156

Résumé

The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a comprehensive comparison of serological COVID-19 assays. We show that the assay detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, had optimal characteristics for antibody detection in different stages of disease.


Sujets)
COVID-19
10.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.03.18.20038059

Résumé

A new coronavirus, SARS-CoV-2, has recently emerged to cause a human pandemic. Whereas molecular diagnostic tests were rapidly developed, serologic assays are still lacking, yet urgently needed. Validated serologic assays are important for contact tracing, identifying the viral reservoir and epidemiological studies. Here, we developed serological assays for the detection of SARS-CoV-2 neutralizing, spike- and nucleocapsid-specific antibodies. Using serum samples from patients with PCR-confirmed infections of SARS-CoV-2, other coronaviruses, or other respiratory pathogenic infections, we validated and tested various antigens in different in-house and commercial ELISAs. We demonstrate that most PCR-confirmed SARS-CoV-2 infected individuals seroconverted, as revealed by sensitive and specific in-house ELISAs. We found that commercial S1 IgG or IgA ELISAs were of lower specificity while sensitivity varied between the two, with IgA showing higher sensitivity. Overall, the validated assays described here can be instrumental for the detection of SARS-CoV-2-specific antibodies for diagnostic, seroepidemiological and vaccine evaluation studies.


Sujets)
COVID-19 , Syndrome respiratoire aigu sévère
SÉLECTION CITATIONS
Détails de la recherche